Intensified Carbon Capture

Daniel Codd; daniel.codd99@gmail.com / 07526371672

Dr Vladimir Zivkovic & Dr Jonathan McDonough

School of Engineering

using adsorption with potential uses in industry

Introduction

- . Industrial processes account for 25% of total EU CO₂ emissions, even while operating at near optimum efficiency
- CO₂ capture and storage offers the potential to reach required CO₂ targets set for 2050
- Current CO₂ capture and storage technologies generate significant energy penalties. The use of solid adsorbents offers ~30-50% less energy consumption than current state-of-the-art liquid absorbent alternatives [1]

The Aims of this Project

- Observe how bed configuration & operating conditions affect CO₂ capture
- Screen activated carbon adsorbents in novel 3D printed geometries

Packed bed

- Column configuration;

Fluidized bed

- Column configuration;

fully packed

- Stationary sorbent
- Air flows through fixed stationary sorbent
- Large pressure drop

Breakthrough Curve

 $O \rightarrow A$, The amount of time it takes the CO_2 to reach the sorbent bed A->B, Represents the time in which the unsaturated sorbent is most effective B->C, Sorbent slowly adsorbs more CO₂, causing it to 'break through' the bed C—>D, The sorbent becomes saturated in CO₂. Once the sorbent is fully saturated the measured outlet CO₂ concentration matches the inlet concentration

Capacity/uptake rate are determined by the difference in breakthrough curves of the activated carbon and an equivalent inert material

Modelling the Data

- Cumulative uptake curves were plotted and used to gain kinetic model parameters for each experiment; three models were considered.
- Fractional order was chosen over 1st and 2nd order models using the residual sum of squares method.

partially filled

- Mobile sorbent
- Lower pressure drop than packed bed

centration

Con

- air flow
- Highly mobile sorbent
- Lower pressure drop than fluidized bed

Ī	n	ne	

Packed Bed								
Air flowrate L/ min	CO2 flowrate SCCM	Capacity mmol/g	Кз	n	m			
	100	0.033	0.506	4.611	4.010			
5	250	0.071	0.279	1.872	1.521			
	500	0.114	3.893	3.932	2.760			
Humid Packed Bed								
Air flowrate L/ min	CO2 flowrate SCCM	Capacity mmol/g	Кз	n	m			
	100	0.039	3 729	3 772	3 /18			

Blue curve - Experimental data

Q_e — Uptake at equilibrium n, m, K3 — constants t — time

Q_t – Uptake at time t

Orange curve - Fractional order model

5 250 3.506 3.538 0.064 2.957 500 0.101 4.404 4.459 3.796

Conclusions

- For all experiments, CO₂ uptake was shown to be mass transfer controlled. In practice, more CO₂ present displayed higher capacity of activated carbon.
- Fluidized bed energy requirements are less than the packed bed.
 - Packed bed displays larger capacity per bed.